An examination of the Sport Drug Control Model with elite Australian athletes

Daniel F. Gucciardi¹, Geoffrey Jalleh², and Robert J. Donovan²

¹School of Human Movement Studies, The University of Queensland

²Centre for Behavioural Research in Cancer Control, Curtin University of Technology

Abstract

Objective: This study presents an opportunistic examination of the theoretical tenets outlined in the Sport Drug Control Model\(^1\) using questionnaire items from a survey of 643 elite Australian athletes.

Design and Method: Items in the questionnaire that related to the concepts in the model were identified and structural equation modelling was employed to test the hypothesised model.

Results: Morality (cheating), benefit appraisal (performance), and threat appraisal (enforcement) evidenced the strongest relationships with attitude to doping, which in turn was positively associated with doping susceptibility. Self-esteem, perceptions of legitimacy and reference group opinions showed small non-significant associations with attitude to doping. The hypothesised model accounted for 30% and 11% of the variance in attitudes to doping and doping susceptibility, respectively.

Conclusion: These present findings provide support for the model even though the questionnaire items were not constructed to specifically measure concepts contained in it. Thus, the model appears useful for understanding influences on doping. Nevertheless, there is a need to further explore individual and social factors that may influence athletes’ use of performance enhancing drugs.

Keywords: Doping in sport; doping susceptibility; performance enhancing drugs
Introduction

The use of performance-enhancing drugs (PEDs) in sport, otherwise referred to as ‘doping’, has received considerable attention by medical, physiology and social science researchers in recent years. Whereas medical and physiology researchers focus on improving methods (e.g. blood, urine, gene) for detecting and deterring athletes from engaging in doping activities\(^2\), social science researchers strive to better understand psycho-social variables (e.g. attitudes, environment, beliefs) that may be salient in educational programs directed towards the prevention of such behaviour\(^3\). With a recognition that the majority of social science research on doping in sport has been largely descriptive and atheoretical\(^3\), the general purpose of the current study was to empirically examine the utility of (untested) theory in furthering understanding of key psycho-social factors associated with using PEDs in sport.

While there have been a number of applications of various cognitive decision or other behavioural science models to doping studies, these have tended to have a limited focus\(^4\cdot\(^6\). For example, some researchers have drawn upon criminal decision-making theory to elucidate the costs, benefits and situational factors that might influence an athlete’s decision to use PEDs\(^4\). Empirical examinations of models grounded in criminal decision-making theory identify personal moral beliefs and health ‘costs’ as important influences on athletes’ hypothetical decisions to use PEDs\(^4\). Others have applied and tested tenets of the theory of planned behaviour\(^5\) to explore the social-cognitive mechanisms regulating adolescents’ use of doping substances\(^6\). Researchers have also proposed non-social cognitive explanations of doping behaviour that encompass both micro (e.g. morality, threat appraisals, social sanctions, ‘win at all costs’ culture of sport) and macro issues (e.g. government funding, technological advances in detecting PED, nationalism)\(^7\). Other non-social cognitive explanations have focused specifically on the goal-directed nature of sport contexts\(^8\). Recently, researchers\(^9\) have sought the views and experiences of key stakeholders (e.g. athletes, coaches, physiotherapists, sport scientists) to develop an empirical model of athlete decisions to use PEDs that includes four key components: objective of PED use, about the PED, deterrence system
and consequences of being detected. Collectively, the aforementioned research and theory underscore the multifaceted and complex nature of social science approaches to understanding PED use in sport.

One of the earliest attempts to provide a comprehensive understanding of PED use was the Donovan et al.1 Sport Drug Control Model (SDCM) (see Figure 1). This model was derived from three prominent behavioural science frameworks (social cognition models, threat/fear appeals, and instrumental and normative approaches) that have been widely used and empirically supported for informing effective health promotion and injury prevention campaigns, including for related issues such as alcohol and illicit drug use10-14. Central to this model of PED use is an athlete’s attitude towards engaging in doping, which is said to be influenced by six major inputs: threat appraisal (deterrence factor based on perceived likelihood of being caught, perceived ‘costs’ of being caught and potential negative health effects); incentive appraisal (perceived benefits of PED use); reference group opinions (importance of peer and relevant others’ approval or disapproval of doping); personal morality (perceptions of right and wrong of PED use); perceived legitimacy of doping laws and anti-doping agencies’ implementation of these laws; and personality factors such as self-esteem and optimism. In turn, attitude to doping is said to influence intention to engage in PED use, which is subject to the affordability and availability of the banned substances. Donovan16 later placed the individual decision-making model in two broader contexts of influence: the sporting environment per se (e.g. intensification of training schedules; medicalisation of sport) and the wider societal environment (e.g. elite sport as entertainment; medicalisation of society in general) (see Figure 2).

Donovan et al.1 drew from the then fairly limited literature on factors influencing athletes’ use of PEDs to support their model. Hence, despite providing a sound foundation with which to better understand the use of PEDs in sport, the tenets outlined in the SDCM1 are based on theoretical frameworks of related phenomena and research in non-sporting populations that remain untested. Accordingly, there is an inherent presumption that prevention methods in sporting contexts link with other health and injury prevention behaviours (e.g. road safety; underage alcohol
and tobacco use; illicit recreational drugs). The purpose of the current study is to address this gap in the literature by empirically examining the utility of the SDCM with an elite sample of Australian athletes. The analysis reported herein was an opportunistic examination of concepts in the SDCM that were included in a larger questionnaire that was concerned with personality profiling of elite athletes and their susceptibility to doping.

Methods

A total of 670 athletes returned a completed survey (response rate = 33%). The sample included both male ($n = 285$) and female athletes ($n = 383$) aged between 14 and 66 years ($M = 23.75; SD = 8.49$). Despite the large age range, only 49 participants were aged 36 and above. These 49 athletes were from equestrian sports ($n = 6$), shooting ($n = 6$), hockey ($n = 5$), weightlifting ($n = 5$), and basketball, archery, curling, table tennis, and lawn balls ($n = 3$ from each sport). In terms of the total sample, the sports represented included a variety of team (e.g. rowing, hockey, baseball, rugby) and individual sports (e.g. cycling, athletics, triathlon, judo). Athletes’ highest level of competition included the Olympic Games (20%), world (49%), national (24.5%), and state championships (4.5%) with a large portion having attained an international (10%) or national title (60%) as their highest achievement. Participants were also highly experienced with 86% having competed in their sport for five or more years. The questionnaire contained items that represented the following concepts (see Table 1): doping susceptibility; attitude to doping; threat appraisal; self-esteem; legitimacy; morality; benefit appraisal; and reference group opinion. Although some scales were drawn from established questionnaires, it is important to note that others items were not developed specifically to assess constructs of interest (i.e. threat appraisal, legitimacy, benefit appraisal, reference group opinion); rather, they were developed as part of ongoing assessments of elite athletes’ opinions of sport issues of which PED use is a central focus.

Curtin University’s human ethics committee granted approval for this project prior to commencing the study. Five Sport Institutes/Sport Academies and 13 National Sporting Organisations (NSO) such as the Australian Rugby League, Hockey Australia, and Australian.
Water Polo were approached. Only one Institute of Sport and four NSOs declined the invitation to take part in the study. An information sheet describing the aims and procedures of the study as well as the research grant proposal were sent to relevant personnel (e.g. Director, Sport Science Manager) at each Australian Institute of Sport/Sport Academy and other NSO. If an organisation agreed to participate, both the research team and industry partner signed a confidentiality agreement ensuring that any confidential information provided to the other party would be used for the purposes of this study only. Questionnaire packages (including a reply-paid envelope) were then couriered directly to athletes who were asked to complete the surveys at a time and place convenient to them. Instructions were provided within the questionnaire package. A covering letter highlighted that athletes were free to participate or not.

The data were screened for missing values and outliers\(^\text{19}\). Twenty-seven participants were excluded because more than 5% of their data was missing, they did not respond to the doping use variable, and/or were considered an outlier leaving 643 participants for the main analyses. Of the remaining 643 participants, only 1.3% of the data was missing and these data were unrelated to any variable, thus they were assumed to be missing at random; missing values were replaced using the expectation maximisation method\(^\text{20}\).

Following a basic descriptive and internal reliability analysis of the study variables using SPSS, AMOS was employed to assess the measurement models of the five latent variables (attitudes to doping, threat appraisal, self-esteem, legitimacy, morality) using confirmatory factor analysis (CFA) and the hypothesised model using structural equation modelling (SEM). To assess model fit for CFA and SEM analyses, we employed well-established indices such as comparative fit index (CFI), incremental fit index (IFI), Tucker-Lewis index (TLI), and the root-mean-square error of approximation (RMSEA) in addition to the Bollen-Stine \(\chi^2\) test. The RMSEA 90% confidence intervals are also provided to assist in interpreting these point estimates. For the CFI, IFI, and TLI indices, values \(\geq 0.90\) and \(\geq 0.95\) are typically considered an acceptable and excellent fit to the data,
respectively. For well specified models, a RMSEA of ≤ 0.06 reflects an excellent fit and a value ≤ 0.08 indicates an acceptable fit21.

Results

Descriptive statistics and reliability estimates for all study variables are presented in Table 2.

With regards to doping use, no athlete reported regularly trying or using banned a PED, four reported occasionally using a banned PED for specific purposes, and one athlete reported briefly using a banned PED in the past. Thus, as only five of the 643 athletes reported a non-abstinence state, we refer to this outcome variable as ‘doping susceptibility’ hereafter. Gucciardi and colleagues22 have previously defined doping susceptibility as “the absence of a firm resolve not to engage in doping activities or to give any consideration at all to an offer to do so” (p. 481). All measures showed adequate reliability (Cronbach’s α = .70) except for attitudes to doping (α = .67) and threat appraisal (α = .68). These subscales were retained in subsequent analyses, as alpha coefficient values were just below the recommended minimum level of .70 for exploratory research23.

Evaluation of normality indicated the presence of multivariate non-normality (Mardia’s index = 94.45). Thus, measurement and structural models were evaluated using bootstrapping (2000 bootstrap samples) to address this24. Independent CFAs of the five latent variables indicated an acceptable fitting measurement model of each construct thereby supporting their inclusion in subsequent SEM analysis. The results of the SEM analysis are summarised in Figure 3. With the exception of a significant Bollen-Stine χ^2, which tends to become inflated with a large sample size14, fit indices supported an acceptable fitting model [$\chi^2(170) = 347.32$, $p < .001$, Bollen-Stine $p = .004$, CFI = .94, IFI = .94, TLI = .93, RMSEA = .040 (90% CI = .034 to .046)] that accounted for 30% and 11% of the variance in attitudes to doping and doping susceptibility, respectively. The standardised parameter estimates indicate a moderate relationship between attitudes to doping and both morality and benefit appraisals, and a lesser relationship with threat appraisals. In turn, doping
susceptibility was moderately associated with attitudes to doping. All other relationships were non-

significant ($p > .05$).

Discussion

To the best of our knowledge, this study is the first to examine the theoretical tenets outlined

in the SDCM\(^1\). We tested a structural model in which attitudes to doping as a single predictor of
doping susceptibility was preceded by six psycho-social variables (threat appraisal, benefit
appraisal, reference group opinion, morality, legitimacy of doping law and agencies, self-esteem).
Support for the hypothesised model was found with some, but not all of the relationships reaching
statistical significance.

Aligned with the hypothesised relations, attitudes to doping evidenced a moderate
relationship with doping susceptibility. This finding is consistent with a body of research that
highlights doping attitudes as a central component for understanding PED use in sport\(^6,8\). When
considering the six hypothesised attitudinal antecedents together, appraisals of threat and benefit as
well as morality (inclination to cheat) revealed the strongest associations with doping attitudes. That
is, athletes who believe they can get away with doping if tested during or out of competition and
that PEDs are beneficial for performance, and are willing to cheat to perform have more favourable
attitudes to doping. Morality evidenced the strongest relationship with attitudes to doping. Until
recently\(^4,6\), the concept of personal morality for doping behaviour has received little attention by
social science researchers. The neglect of morality in the doping arena is surprising given the wealth
of research on this construct in sport contexts\(^25\) and personal perspectives of athletes. Bodybuilders,
for example, have reported that their decision to take steroids was characterised by feelings of guilt
and/or compromised morals\(^26\). Similarly, athletes tend to view the use of PEDs as the most serious
form of cheating across sports when compared with other questionable sporting actions (e.g.
intending to injure an opponent, disguising a foul)\(^27\). Education programs that deal with morality
issues of PED use should be developed and evaluated for incorporation in preventative efforts. Such
programs may target stakeholders such as coaches and parents (e.g. educating them about the
importance of promoting prosocial behaviours, such as congratulating an opponent) and athletes (e.g. using moral dilemmas or scenarios to encourage discussion and reflection). It is also likely that morality-based interventions may be more beneficial for younger athletes in their formative years when compared with adult participants whose morals are largely established and thus more stable.28

The emergence of appraisals of threat relating to enforcement and benefit to performance as important variables for doping susceptibility are key extensions of previous research. Campaigns that focus on deterring athletes via threat appeals are common practice in the sport context but are virtually impossible to implement 100% of the time. Some commentators question the long-term effectiveness of such campaigns as some athletes “perceive” considerable benefits to enhanced performance via PED use. Although changes in attitudes and morality may be more effective in the long term, short-term strategies involving deterrence methods are often required for those individuals in most need of attitudinal and moral changes. The current findings support the need to both enforce deterrence methods and challenge athletes’ appraisals of the benefits of PED use for performance.

The non-emergence of the hypothesised relationships between doping attitudes and reference group opinions, legitimacy of doping law and agencies, and personality are at odds with previous research. Such inconsistencies across studies may be related to the different methods of measurement and sample characteristics. For example, previous research has focused on high school adolescent athletes aged 10 to 18 years whereas our focus was on a broader age range of elite athletes. Alternatively, whereas our focus was on a broader assessment of self-esteem others have provided evidence for the usefulness of behaviour-specific forms of personality constructs such as doping-specific self-regulatory efficacy. Conceptually, it may be that reference group opinions, legitimacy of doping law and agencies, and personality are less influential in the context of appraisals of threat and benefit as well as morality. An alternative explanation, particularly with regard to reference group opinions, relates to the complex network of relationships (e.g. coaches, trainers, peers) that underpin the supply of and demand for PEDs in sport contexts. Attempts to
measure and therefore delineate the influence of specific reference groups rather than a general indicator as used in the current study would prove useful. Nonetheless, whether the inconsistency in findings is related to methodological and/or conceptual issues is an important avenue for further investigation.

Limitations and future research

There are certain limitations that should be acknowledged when interpreting the current findings and many of these give rise to avenues for future research. First, the opportunistic nature of the study meant that some of the indicators were not designed to specifically measure the constructs of interest. Therefore, there is a need for future work to replicate and extend the current research using carefully crafted indicators and psychometrically sound measures of target constructs.

Second, the cross-sectional nature of the study does not permit inferences about the direction of the hypothesised relationships. Prospective designs (e.g. assessing key constructs over multiple time points) and experimental studies (e.g. manipulating different types and levels of threat appraisals) represent exciting avenues of future research. Third, as self-reports of doping-related constructs can be affected by attempts to respond in a socially desirable manner, we should exercise caution when interpreting findings that rely solely on subjective data. Accounting for social desirability is a must for future research involving self-reported data. Fourth, with our focus on elite Australian athletes it is important for future research to examine the extent to which the current findings generalise to athletes at other levels if competition as well as those of different cultural backgrounds. Invariance analyses in which the measurement and structural properties of hypothesised models are examined across groups (e.g. gender, age, sport type) may prove fruitful in ascertaining the robustness of theoretical explanations of doping in sport. Fifth, it may have been that those athletes who did not return a completed survey may have been more likely to take PED than those individuals who participated in this study. Indeed, there is evidence to support the notion that athletes in different sports have a different approach to doping.
Conclusion

Despite the aforementioned limitations, the current study makes an important contribution to the social science doping literature by providing the first empirical examination of the SDCM\(^1\). Findings lend support for the robustness of previous research but also highlight points of difference that indicate the need for further research to explore how well the current findings generalise to other athlete populations. Qualitative research that generates key stakeholders’ perspectives on the doping phenomenon appears to be a useful approach for integrating important features of social science research on PED use\(^9\). Collectively, the current findings and those of previous research\(^4, 6, 9\) indicate that attitudes to doping, morality, and appraisals of benefit for performance and threat of enforcement warrant further scrutiny as key features of a comprehensive, formalised theory of the psycho-social aspects of the doping phenomenon. More broadly, it is encouraging to note the emerging consistencies between deductively\(^1, 7, 8\) and inductively\(^9\) derived models of PED use in sport.

Practical implications

- Efforts to deter and reduce doping need to be multifaceted and comprehensive.
- Discussions that challenge and/or improve athletes’ beliefs underlying their attitudes to doping, along with increased emphasis on moral aspects may prove effective in reducing susceptibility to PED use, and, for athletes with little moral basis for not doping, frequent out-of-competition random testing is useful as a doping deterrent.
Acknowledgements

This study is part of a larger project supported by the Australian Government through the Anti-Doping Research Program (ADRP) of the Department of Health and Ageing. Appreciation is extended to all sport institutes, academies and organisations that provided assistance in the recruitment of athletes, and to the anonymous reviewers for their feedback on an earlier version of this manuscript. The first author is supported by a University of Queensland Postdoctoral Research Fellowship.
References

Table 1. Overview of the study constructs and associated items with response scales/categories included in the questionnaire package.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Item(s)</th>
<th>Response Scale/Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doping use</td>
<td>Which of the following most applies to you?</td>
<td>(1) never considered using a banned PED; (2) at one stage thought briefly about using a banned PED; (3) at one stage thought quite a bit about using a banned PED; (4) still think occasionally about using a banned PED because other athletes are using them; (5) briefly used a banned PED in the past but no longer do so; (6) occasionally use a banned PED now for specific purposes; and (7) regularly try or use banned PED</td>
</tr>
<tr>
<td>Attitudes to Doping [15]</td>
<td>1. Athletes often lose time due to injuries and drugs can be used to help make up the lost time.</td>
<td>(1) Strongly disagree to (7) strongly agree</td>
</tr>
<tr>
<td></td>
<td>2. Athletes who take recreational drugs use them because they help them in sport situations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. The risks related to doping are exaggerated.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Doping is an unavoidable part of competitive sport.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. There is no difference between drugs and the technical equipment that can be used to enhance performance (e.g., hypoxic altitude simulating environments).</td>
<td></td>
</tr>
<tr>
<td>Threat Appraisal</td>
<td>1. From what you know or have heard, if you were to take banned performance enhancing substances out of competition, how likely do you think that you could get away with it if you really tried to?</td>
<td>(1) Not at all likely to (7) very likely</td>
</tr>
<tr>
<td></td>
<td>2. From what you know or have heard, if you were to take banned performance enhancing substances while competing, how likely do you think that you could get away with it if you really tried to?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. From what you know or have heard, how likely is it for an athlete to successfully appeal a penalty for a positive drug test in your sport?</td>
<td></td>
</tr>
<tr>
<td>Self-Esteem [17]</td>
<td>1. I feel that I’m a person of worth, at least on an equal basis with others.</td>
<td>(1) Strongly disagree to (7) strongly agree</td>
</tr>
<tr>
<td></td>
<td>2. I am able to do things as well as most people.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. I take a positive attitude toward myself.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. On the whole, I am satisfied with myself.</td>
<td></td>
</tr>
<tr>
<td>Legitimacy</td>
<td>1. How secure are the Australian Sports Anti-Doping Authority’s drug testing procedures in Australia? (That is, in taking of samples and care of samples).</td>
<td>(1) Not at all secure to (7) very secure</td>
</tr>
<tr>
<td></td>
<td>2. How serious do you feel the Australian Sports Anti-Doping Authority is in preventing banned performance enhancing substance use in Australia?</td>
<td>(1) Not at all serious to (7) very serious</td>
</tr>
<tr>
<td></td>
<td>3. Overall, how effective do you feel the Australian Sports Anti-Doping Authority is in preventing banned performance enhancing substance use in sport in Australia?</td>
<td>(1) Not at all effective to (7) very effective</td>
</tr>
<tr>
<td>Morality (cheating) [18]</td>
<td>I would cheat if I thought it would help me win.</td>
<td>(1) Strongly disagree to (7) strongly agree</td>
</tr>
<tr>
<td></td>
<td>If other people are cheating, I think I can too.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I cheat if I can get away with it.</td>
<td></td>
</tr>
<tr>
<td>Benefit Appraisal</td>
<td>In your sport, how necessary do you believe it is for athletes to use banned performance enhancing substances at least at some of the time to perform at the very highest levels?</td>
<td>(1) Definitely don’t have to use banned performance substances at some time to (7) definitely do have to use banned performance substances at some time</td>
</tr>
<tr>
<td>Reference Group Opinion</td>
<td>If you were given the opportunity to use a banned performance enhancing substance, how much would the following stop you from doing it:</td>
<td>(1) Definitely would not stop me to (7) definitely would stop me</td>
</tr>
<tr>
<td>Note: Measurement models of established questionnaires were analysed using pilot data (n = 224) collected before the administration of the final questionnaire package. As some measurement models did not receive adequate support, modifications were made based on statistical and conceptual grounds. Thus, scales employed to assess attitudes to doping, morality, and self-esteem in the current study are not exact replications of their original models. Interested readers can contact the corresponding author for a full description of these analyses and results.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. *Descriptive statistics and internal reliability estimates for all study variables (n = 643).*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range</th>
<th>M</th>
<th>SD</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doping susceptibility</td>
<td>1–6</td>
<td>1.10</td>
<td>.51</td>
<td>-</td>
</tr>
<tr>
<td>Attitudes to doping</td>
<td>1–7</td>
<td>2.18</td>
<td>.99</td>
<td>.67</td>
</tr>
<tr>
<td>Threat appraisal</td>
<td>1–7</td>
<td>2.89</td>
<td>1.33</td>
<td>.68</td>
</tr>
<tr>
<td>Self-esteem</td>
<td>2.25–7</td>
<td>5.68</td>
<td>.89</td>
<td>.75</td>
</tr>
<tr>
<td>Legitimacy</td>
<td>2.33–7</td>
<td>5.64</td>
<td>1.06</td>
<td>.75</td>
</tr>
<tr>
<td>Morality</td>
<td>1–7</td>
<td>1.53</td>
<td>.98</td>
<td>.84</td>
</tr>
<tr>
<td>Benefit appraisal</td>
<td>1–7</td>
<td>1.34</td>
<td>.98</td>
<td>-</td>
</tr>
<tr>
<td>Reference group opinion</td>
<td>1–7</td>
<td>6.27</td>
<td>1.55</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 1. The Sport Drug Control Model1.

- Threat Appraisal [Deterrence]
- Benefit Appraisal [Incentive]
- Personal Morality
- Legitimacy
- Reference Group Opinion
- Attitudes/Intentions RE PEDs
- Personality / Self Esteem / Optimism
- Affordability
- Availability
- Behaviour Compliance / Non Compliance
Figure 2. Overall framework for predictors of athletes’ use of performance-enhancing drugs.

- **Broad Sociocultural Context**
- **Sports Socioeconomic Context**
 - Reference Group Appraisal
 - Personality Factors
 - Affordability
 - Benefit Appraisal
 - Threat Appraisal
 - Attitudes and Intentions
 - Legitimacy
 - Personal Morality
 - Availability
 - Behaviour