On the Within-Person Associations Between Mindfulness, Stress, Mood, and Self-Reported Performance: A Daily Diary among Elite Chinese Athletes

Chun-Qing Zhang 1*, Ru Zhang 2#, Shufang Zheng 1, Junhao Pan 1, Dandan Wang 3, Hugh Riddell 4, Daniel Gucciardi 4

1 Department of Psychology, Sun Yat-sen University
2 School of Physical Education & Sports Science, South China Normal University
3 Research Department, Guangdong Ersha Sports Training Center
4 Curtin School of Allied Health, Faculty of Health Sciences, Curtin University

Author Note
Chun-Qing Zhang: https://orcid.org/0000-0002-0683-4570
Ru Zhang: https://orcid.org/0000-0001-8744-4525
Junhao Pan: https://orcid.org/0000-0001-7156-6077
Hugh Riddell: https://orcid.org/0000-0001-8218-7822
Daniel Gucciardi: https://orcid.org/0000-0001-5448-3990

Chun-Qing Zhang played lead role in conceptualization, data curation, funding acquisition, investigation, methodology, project administration, resources, supervision, and writing - original draft, review and editing. Ru Zhang played supporting role in funding acquisition, investigation, methodology, and equal role in writing - original draft, review and editing. Shufang Zheng played lead role in formal analysis and software, and supporting role in writing - review and editing. Junhao Pan played equal role in formal analysis and software, and supporting role in writing - review and editing. Dandan Wang played lead role in data collection, and supporting role in writing - review and editing. Hugh Riddell played equal role in writing - review and editing. Daniel Gucciardi played equal role in writing - review and editing.

The data sets generated during the current study are publicly available on the open science framework (OSF): https://osf.io/5a7vj/

This research was supported by the National Natural Science Foundation of China (NSFC; No. 31800948). The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Chun-Qing Zhang and Ru Zhang contributed equally on this manuscript.
Correspondence concerning this article should be addressed to Chun-Qing Zhang at Department of Psychology, Sun Yat-sen University, No. 132 Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
Email: zhangchq28@mail.sysu.edu.cn

© 2023, American Psychological Association. This paper is not the copy of record and may not exactly replicate the final, authoritative version of the article. Please do not copy or cite without authors' permission. The final article will be available, upon publication, via its DOI: 10.1037/spy0000338
Abstract

Evidence for the protective role of dispositional mindfulness for athletic performance, stress, and mood among elite athletes has been demonstrated through correlational and interventional studies. The effects of state mindfulness on athletic functioning in day-to-day training contexts remains unclear. We examined the effects of state mindfulness on mood, biological markers of stress, and self-rated athletic performance in elite athletes during daily training. We used a diary study design to collect data on state mindfulness, mood, self-rated athletic performance, and salivary cortisol directly following training sessions of 78 elite athletes. For each athlete, a total of 27 data points were obtained across 9 weeks with data collected on a separate day, 3 days per week. Data were analyzed with multilevel structural equation modelling. At both the between-person and within-person levels, state mindfulness was significantly and negatively related to total mood disturbance and maladaptive dimensions of mood, including anger, confusion, depression, fatigue, and tension. Conversely, state mindfulness was positively related to vigor and self-rated athletic performance. Relations between state mindfulness and biological markers of stress were non-significant. Overall, findings of the current study provide preliminary empirical evidence supporting the utility of mindfulness interventions for improving state mindfulness of elite athletes. Such interventions may increase the positive mood of athletes and their performance during training.

Keywords: daily training; diary method; mood disturbance; mindfulness; sport performance; stress biological marker.
Introduction

During daily training, athletes can experience chronic stress, negative affect, and depleted mood, as they strive to improve their athletic performance (Rice et al., 2016). In addition to the use of traditional psychological skills to promote athletic performance (Lange-Smith et al., 2023) and psychotherapies to improve mental health outcomes (Stillman et al., 2019), mindfulness intervention is widely considered an effective approach for improving athletic performance and mental wellbeing (Bühlmayer et al., 2017; Myall et al., 2023). In the context of sports, mindfulness can buffer maladaptive outcomes including stress, negative affect, and maladaptive forms of mood (e.g., depression) among athletes (e.g., Gross et al., 2018). However, a key limitation of previous work in this field is that it has relied predominantly on evidence from cross-sectional snapshots (e.g., Shannon et al., 2020) and longitudinal research designs (e.g., Zhang et al., 2023) with widely spaced assessments that offer limited resolution on within-person effects. Even interventional designs (e.g., Quaglia et al., 2016) typically take only a few, infrequent measures to capture changes in dispositional mindfulness and adaptive/maladaptive outcomes (e.g., baseline and post-study follow-up measurements). Dispositional mindfulness reflects an individual’s innate capacity to attend to or be aware of present-moment experiences with an attitude of acceptance (Brown & Ryan, 2003). State mindfulness, on the other hand, is the purposeful direction of attention to present-moment experiences to intentionally cultivate and maintain a mindful state that emphasizes nonelaborative awareness and acceptance of a situation (Bishop et al. 2014). The cultivation of greater state mindfulness over time during mindfulness meditation contributes to increases in dispositional mindfulness (Kiken et al., 2015).

Although the research on dispositional mindfulness provides insights on the understanding of nomological network of mindfulness and individual differences (Karl & Fischer, 2022), some researchers view mindfulness as much closer to a state than a trait, given the state-like, context-dependent, and variable nature of mindfulness (Bishop et al., 2014; Tanay & Bernstein, 2013). For
example, Bravo et al. (2018) found that both dispositional mindfulness and state mindfulness facets increased with the frequency of meditation practice, yet the associations between them were relatively weak. Further, the effects of an individual’s state mindfulness on adaptive and maladaptive outcomes do not depend on their dispositional mindfulness (Bravo et al., 2018; Kiken et al., 2015). As a result, findings based on dispositional mindfulness offer limited ecological validity and cannot be directly generalized to athletes’ day-to-day training regimes (Reifsteck et al., 2021). Despite an emerging body of evidence distinguishing state mindfulness from dispositional mindfulness, our understanding of the state/dispositional mindfulness distinction both within and beyond sports contexts remains limited. Further research on state mindfulness is required to assess the mechanism of mindful experiences rather than mindfulness as a dispositional tendency. To address this gap, we adopted a daily diary design to examine the within-person associations between state mindfulness, biological markers of stress, mood, and self-rated athletic performance in a sample of elite Chinese athletes during daily training.

Mindfulness has been found to play an important role in alleviating the influence of stress among both elite (Myall et al., 2023) and non-elite (e.g., student) athletes (Petterson & Olson, 2017). Dispositional mindfulness is negatively associated with self-reported stress in elite and elite junior athletes (Gustafsson et al., 2015; O’Connor et al., 2022). In terms objective indicators of stress, salivary cortisol is widely used as a non-invasive biomarker of stress in sport and other contexts (Lindsay & Costello, 2017). Mindfulness interventions have been shown to reduce biological markers of stress (e.g., salivary cortisol) in elite military units (Meland et al., 2015), elite shooters (John et al., 2011), and elite Wushu athletes (Mehrsafar et al., 2019). Despite this accumulating body of evidence supporting the utility of mindfulness for reducing athlete stress, inconsistencies remain in the literature. For example, Moen and colleagues (2015) found no significant effects of a 12-week mindfulness intervention on perceived stress in elite junior athletes. Similarly, Roeser and colleagues (2013) found that a mindfulness intervention significantly reduced perceived occupational stress, yet
it did not produce changes in physiological measures of stress in a sample of teachers. Thus, despite mindfulness interventions showing promise for reducing stress in sports, further examination of the effects of state mindfulness on biological indicators of athlete stress is warranted, particularly in daily training contexts, which allow researchers to examine how state mindfulness differentiates stress within individual athlete’s training regimes, as well as between athletes.

Mindfulness can also enhance affect and mood of athletes (Lever et al., 2021; Myall et al., 2023; White et al., 2021). Experience sampling studies have demonstrated day-to-day associations between state mindfulness and improved mood in non-sporting contexts. For example, Iida and Shapiro (2019) conducted a 24-day daily diary study of cohabiting heterosexual couples and found that on days when participants reported higher levels of non-judgmental mindfulness, they experienced lower levels of negative mood. Interventional studies have demonstrated that mindfulness training can produce increases in positive mood, while also reducing maladaptive aspects of mood including negative affect, anxiety, depression, fatigue, and confusion (e.g., Caldwell et al., 2010; Vieten & Astin, 2008; Carlson & Garland, 2005). However, the literature does not unanimously support adaptive effects of mindfulness interventions for mood. For example, Mohammed and colleagues (2018) found no significant effect of a mindfulness intervention on the mood of injured athletes who were absent from training for more than three months. Although there has been some investigation of the effects of mindfulness interventions on mood in competitive settings, research on the relation between state mindfulness and fluctuations in mood over athletes’ day-to-day training schedules is lacking. Given that mood and affect vary across days, it is important to examine the effects of state mindfulness on mood and affect at daily level for a more granular perspective than has previously been uncovered.

In addition to supporting the psychological wellbeing of athletes, there is emerging evidence indicating that mindfulness can facilitate athletic performance (Bühlmayer et al., 2017). Several studies have demonstrated small-to-medium positive associations between dispositional mindfulness
and athletic performance (Gooding & Gardner, 2009; Gustafsson et al., 2015). Improvements following mindfulness training have been observed in objective indicators of performance such as free throw shooting in basketball players (Tebourski et al., 2022), shooting performance of shooters (John et al., 2011), and dart throwing performance of beginners (Zhang et al., 2016), as well as self-rated (Josefsson et al., 2019) and coach-rated performance (Gross et al., 2018). However, in another study, the effects of a 12-week mindfulness intervention on athletic performance of elite junior athletes was statistically inconsequential (Moen et al., 2015). Most research on mindfulness in sport has focused on dispositional mindfulness in competitive settings, with data being collected pre- and post-intervention (e.g., Glass et al., 2019; Gross et al., 2018; Mardon et al., 2016). However, tests of the effects of state mindfulness are needed, given that dispositional mindfulness measures are likely to overlook state-like elements of mindfulness. Based on the current literature, it is unclear whether the benefits of state mindfulness translate to the maintenance of performance across training situations. Given that training contexts provide athletes with opportunities to explore mindfulness strategies in ways that are best aligned with competition settings, it is important to examine associations between state mindfulness and athletic performance during training.

The Current Study

Given that factors such as state mindfulness, mood, and performance are likely to differ for individual athletes across training sessions, it is crucial to consider within-athlete variations alongside between-athlete differences. Somewhat surprisingly, few studies with elite athletes (e.g., Hancox et al., 2017; Röhlin et al., 2023; Rumbold et al., 2020) have adopted daily diary designs to provide sufficient granularity on within-person processes and outcomes with ecological validity. Addressing this gap will be key for developing effective mindfulness-based interventions that can be integrated into daily training regimes of elite athletes and could potentially provide an evidentiary basis for the integration of mindfulness practice as a part of elite athletes’ training routines, rather than a one-off, short-term intervention program.
In the current study we used an intensive longitudinal assessment approach to examine the effects of state mindfulness on mood, biological markers of stress, and self-rated athletic performance in a diverse sample of elite Chinese athletes across 27 training sessions over 9 weeks. We hypothesized that state mindfulness is significantly and negatively related to maladaptive aspects of mood (e.g., depression) and biological indicators of stress at both the between-person level (i.e., variance due to individual differences) and the within-person level (i.e., day-to-day intra-individual variability). We also hypothesized that state mindfulness is significantly and positively related to positive aspects of mood (e.g., vigor) and self-rated athletic performance at both the between-person and within-person levels.

Methods

Transparency and Openness

We report how we determined our sample size, measures, procedures, and other methods in the study. The data sets generated during the current study are publicly available on the open science framework (OSF): https://osf.io/5a7vj/. The study was not preregistered.

Study Design

The day-reconstruction method (Kahneman et al., 2004) was used to avoid disrupting the training of elite athletes as it is less burdensome on athletes than experience sampling and can reduce memory biases of global recall (Diener & Tay, 2014). We obtained athlete’s self-reported state mindfulness, mood, and athletic performance, and collected saliva samples directly after their afternoon training sessions (e.g., between 16:00-18:00). Building on theoretical considerations (Birrer et al., 2012; Lindsay & Creswell, 2019) and existing empirical evidence on the effects of dispositional mindfulness on athletic performance, as well as adaptive and maladaptive outcomes (e.g., Röthlin et al., 2016; Zhang et al., 2021, 2023), multilevel structural equation modelling (Preacher et al., 2016) was used to investigate the between-person and within-person effects from state mindfulness to biological stress, mood, and athletic performance.
Participants

According to the Participant Classification Framework (McKay et al., 2022), participants in the current study are highly-trained national-level athletes. Our sample can be classified as elite athletes given that they reached the performance standard required to compete nationally and completed structured and periodized training (i.e., at least five days per week) for more than three years within a given sport (Swann et al., 2015). We focused on elite athletes rather than athletes at any performance level because research demonstrates that elite athletes are vulnerable to a range of mental health problems (Rice et al., 2016) due to overtraining, injury, burnout, deteriorated performance, and other factors in high-performance environments (Hughes et al., 2012).

In total, 78 elite Chinese athletes (49 males and 29 females) in a provincial sport training center in South China participated in this study. Monte Carlo simulations of multilevel data with medium sized intraclass correlation coefficients indicate a sample of 70 participants providing 25 observations would produce 80% power to detect small ($\beta > .12$) within-person effects (Arend & Schäfer, 2019). Thus, the present sample size is adequate given we were predominantly interested in daily mean levels and included 27 observations at the within-person level (Nezlek, 2020). The athletes represented 11 different individual ($n = 69; 88.5\%$) and team sports ($n = 9; 11.5\%$), including synchronized swimming ($n = 3$), trampoline ($n = 8$), weight lifting ($n = 6$), table tennis ($n = 7$), free combat ($n = 4$), water polo ($n = 6$), gymnastics ($n = 17$), athletics ($n = 9$), diving ($n = 5$), martial arts ($n = 5$), and swimming ($n = 8$). To increase the generalizability of study findings, both junior and adult elite athletes were invited to participate in the current study. Participants comprised both elite ($n = 51$) and junior elite athletes ($n = 27$) aged between 13 and 26 years ($M = 18.67; SD = 2.88$). All participants were competing at the national level competition and 17 participants (19.2%) also competed at the international level. Years of sports training for participants of the current study ranged from 3 to 19 years ($M = 10.25; SD = 3.83$). Approximately half of the participants reported having previous meditation experience ($n = 40; 51.3\%$).
Procedure

We reached an agreement with the elite sports training center to collect data from the center-based elite athletes. Part of the agreement required that athlete support personnel (e.g., physicians, physiotherapists, sport psychology practitioners) manage the data collection process with athletes in their direct supervision with our support. For junior elite athletes younger than 18 years old, we obtained approvals from their coaches, who served as a proxy of parents. At baseline assessment, consenting athletes reported their demographic information and their dispositional mindfulness. For the diary data, athletes completed surveys each day, three times per week, for nine weeks, with a total of 27 time points obtained from each participant. The training center recommended this data collection schedule to minimize participant burden and maximize potential data quality because the center-based elite athletes normally train five to six days per week. Athletes completed daily diaries either on Monday, Wednesday, and Friday, or on Tuesday, Thursday, and Saturday, depending the training schedules of their team. Our research team distributed and collected the questionnaires at the end of their afternoon training. Salivary samples were also collected from athletes immediately after training and then stored in a research grade freezer upon collection. The Research Ethics Committee (REC) of Hong Kong Baptist University approved this study protocol prior to initiation and execution.

Measures

Dispositional Mindfulness. We measured participants’ dispositional mindfulness using the 16-item Athlete Mindfulness Questionnaire (AMQ; Zhang et al., 2017). The AMQ consists of three dimensions: present-moment attention (e.g., “I can maintain my attention on my training”), awareness (e.g., “During training or competition, I can be immediately aware of my emotional changes”), and acceptance (e.g., “During training and competition, it doesn’t matter if the situation is good or bad, I can accept myself for who I am”). Items were rated on a five-point rating scale, ranging from 1 (never true) to 5 (always true). In the current study, the composite reliabilities of the
three subscales are all acceptable: present-moment attention ($\omega = .746$), present-moment attention ($\omega = .805$), and present-moment attention ($\omega = .805$).

State Mindfulness. We adapted the Chinese version of the 5-item Mindful Attention Awareness Scale (MAAS) – State (Brown & Ryan, 2003), which has been validated in a Chinese sample (Black et al., 2012), for use in the sporting context (see the online supplementary file Table S1). We specifically adapted items to target training experiences of that day; for example, we rephrased the statement “I find it difficult to stay focused on what’s happening in the present” to “I find it difficult to stay focused on today’s training sessions”. Athletes rated each statement using a 7-point Likert rating scale from 0 (not at all) to 6 (very much). We reversed scored items then calculated an average of the 5 items, such that higher scores indicated higher state mindfulness. We pilot tested the scale with junior elite athletes to ensure they understood the items. In the current study, we examined psychometric properties of the adapted sport-specific 5-item MAAS-state using multilevel confirmatory factor analysis (MCFA; Muthén, 1994). A single factor solution provided satisfactory model-data fit ($\text{CFI} = .932$, RMSEA = .057, SRMR within = .030, and SRMR between = .007).

Mood. We utilized the 23-item Chinese version of the Brunel Mood Scale (BRUMS; Terry et al., 2003) to measure athletes’ mood after their daily training sessions. Across four samples of adolescent athletes, adolescent students, adult athletes, and adult students, the Chinese version BRUMS showed adequate validities and composite reliabilities with both the negative dimensions of mood on anger (.82-.89), confusion (.71-.79), depression (.77-.85), fatigue (.83-.85), and tension (.83-.88), as well as the positive dimension of mood, vigor (.81-.86) (Zhang et al., 2014). In line with previous research (e.g., Burgum & Smith, 2021), a total mood disturbance score was also calculated by summing the five negative mood states. Athletes rated short terms that reflect various mood types (e.g., angry, nervous, and unhappy) with a 5-point Likert scale ranging from 0 (not at all) to 4 (extremely) using the response timeframe of “What are your feelings during training today?”. The
inclusion of total mood disturbance is necessary as its calculation can reflect an overall mood status rather than only relying on the pre-determined mood dimensions as positive or negative (Han, 2020).

Self-rated athletic performance. Consistent with previous research (e.g., Josefsson et al., 2019), we asked participants to assess their overall sport performance of the training that day using a 10-point Likert rating scale from 1 (extremely bad) to 10 (extremely good).

Stress. We assessed human cortisol and human secretory immunoglobulin A (sIgA) via saliva samples with the enzyme-linked immunosorbent assay (ELISA) kit (Crowther, 2009). The ELISA kit includes a set of calibration standards to measure the concentration of sIgA and cortisol in the sample. The analyses of the biological stress levels of cortisol and sIgA were provided by the manufacturer of the ELISA kit, Guangzhou Haisi Medical Technology Co., Ltd.

Data Analyses

We calculated descriptive statistics including means, standard deviations, and bivariate correlations among study variables using IBM SPSS 20. Composite reliabilities of the MAAS-State and mood subscales of BRUMS were calculated following the recommendation of Lai (2021) using the lavaan package in R. Given the nested structure of the data, with multiple daily assessments nested within each participant, we calculated the intraclass correlation coefficient (ICC) for each variable. When ICC values exceed 0.5, analysts are advised to utilize statistical models that account for nonindependence in the data (Barcikowski, 1981; Bryk & Raudenbush, 1992). We used multilevel structural equation modelling with a robust maximum likelihood estimator (Hox et al., 2010) in Mplus 8.6 (Muthén & Muthén, 1998-2017) to estimate the effects of state mindfulness on outcome variables (Mehta & Neale, 2005). Missing data were handled by the full information maximum-likelihood estimation (Enders, 2010) within Mplus 8.6.

We constructed five models to examine the effects of mindfulness on total mood disturbance (Model 1), different dimensions of mood (Model 2), self-rated athletic performance (Model 3), sIgA (Model 4), and cortisol (Model 5). Athletes’ gender, age, years of training, type of sport (individual
vs. team sports), dispositional mindfulness, and meditation experience were included as covariates to control for their potential influence on key study outcome variables at the between-person level. A depiction of the multilevel model for the effects from mindfulness to total mood disturbance is provided as an example (Figure 1). To account for potentially inflated type 1 error rates due to multiple comparisons, we adjusted the alpha values for statistical significance from $p < 0.05$ to $p < 0.01$. Model fit was evaluated using the comparative fit index (CFI) and Tucker-Lewis Index (TLI), root-mean-square error of approximation (RMSEA), and standardized root-mean-square residual (SRMR). Adequate fit was indicated with CFI and TLI ≥ .95, RMSEA ≤ .08, and SRMR ≤ .08 (Yuan & Bentler, 2007).

Results

Descriptive Statistics

We present descriptive statistics, internal consistency estimates, ICCs, and bivariate correlations at the within-person and between-person levels in Table 1. Internal consistency estimates of the state mindfulness and subscales of mood using composite reliability are all acceptable ($\omega > .70$). For detailed coefficients with confidence intervals, see the online supplementary file Table S2. At the within-person level, on days where athletes reported higher state mindfulness during training relative to their average, they tended to experience reduced negative mood ($r = -.464, p < .001$) and lower levels of biological stress ($r_{cortisol} = -.057, p = .009$). Additionally, athletes rated their perceived performance as better during training on days where they reported higher levels of state mindfulness relative to their average ($r = .067, p = .009$). Regarding between-person level effects, athletes who reported higher levels of state mindfulness experienced lower mean levels of biological stress ($r_{cortisol} = -.837, p < .001$; $r_{sIgA} = -.833, p < .001$) and rated their athletic performance higher ($r = .863, p < .001$). Overall, ICC values supported a multilevel approach to testing the research questions.

Multilevel Structural Equation Modelling
Model fit indices indicate adequate fits for all tested models (see the online supplementary file Table S3). We present a summary of between-person and within-person effects of mindfulness on total mood disturbance, subdimensions of mood (i.e., anger, confusion, depression, fatigue, tension, and vigor), self-rated athletic performance, sIgA, and cortisol in Table 2. Given the associations between control covariates and key outcome variables are tangential to our hypotheses, we provide them in the online supplementary file Table S4.

Effect of mindfulness on mood. State mindfulness was significantly and negatively related to total mood disturbance at both the within-person ($\beta = -.454, p < .001$) and between-person ($\beta = -.610, p < .001$) levels. Regarding the association between mindfulness and individual dimensions of mood, at the within-person level, mindfulness was negatively related to anger ($\beta = -.278, p < .001$), confusion ($\beta = -.433, p < .001$), depression ($\beta = -.375, p < .001$), fatigue ($\beta = -.296, p < .001$), tension ($\beta = -.306, p < .001$), and positively related to vigor ($\beta = .205, p < .001$). Similarly, at the between-person level, mindfulness was negatively related to anger ($\beta = -.503, p < .001$), confusion ($\beta = -.702, p < .001$), depression ($\beta = -.561, p < .001$), fatigue ($\beta = -.327, p = .023$), tension ($\beta = -.523, p < .001$), and positively related to vigor ($\beta = .195, p = .053$).

Effect of mindfulness on athletic performance. Mindfulness was positively related to self-rated athletic performance during training at the within-person ($\beta = .426, p < .001$) and between-person levels ($\beta = .415, p < .001$).

Effect of mindfulness on stress. Using $p < .01$ as the adjusted cutoff of significance, the effects of mindfulness on sIgA at the within-person level ($\beta = .043, p = .023$) and between-person level ($\beta = -.096, p = .758$) were non-significant. The effects from mindfulness on cortisol at the within-person level ($\beta = -.028, p = .205$) and between-person level ($\beta = -.113, p = .836$) were also non-significant. It seems that daily state mindfulness was not related to stress indicated by biological markers.

Discussion
The current study examined the effects of state mindfulness on mood, self-rated athletic performance, and biological indicators of stress during daily training in a sample of Chinese elite athletes. Study findings support a negative relationship between state mindfulness and total mood disturbance, as well as maladaptive sub-dimensions of mood such as anger, confusion, depression, fatigue, and tension. Conversely, mindfulness was positively associated with vigor and self-rated athletic performance. Despite associations with reduced maladaptive mood and increased performance, state mindfulness was not related to biological indicators of stress. Overall, our study findings provide preliminary empirical support for interventions targeting the improvement of state mindfulness to increase the mood of athletes and perceived performance during training.

Our results demonstrate that higher levels of state mindfulness in athletes are associated with reduced negative mood during training. These findings are in line with previous studies. For example, increased dispositional mindfulness was significantly related to improved mood among college students (Caldwell et al., 2010) and women in cohabiting heterosexual couples (Iida & Shapiro, 2019). In the context of sport, mindfulness training can be used to promote mood in junior tennis players (Lever et al., 2021). Developing mindfulness outside of competitive settings is an important consideration for athletes’ long-term wellbeing, as it has the potential to help prevent mood disturbance and mental health issues (Myall et al., 2023). Indeed, many mindfulness-based interventions target emotional regulation, experiential acceptance, and decentering as working mechanisms that relate mindfulness to adaptive mood-related outcomes such as positive affect, subjective well-being, and flourishing (Nien et al., 2023; Zhang et al., 2021). Future research could also consider examining the working mechanisms from state mindfulness to mood in daily training contexts and use more ecological momentary designs such as experience sampling methodology to help shed light on nuanced temporal associations.

When applying mindfulness to sports contexts, the main role is for performance enhancement among athletes (Birrer et al., 2012; Bühlmayer et al., 2017). Findings of this study provided
preliminary empirical support that state mindfulness is related to self-rated athletic performance in daily training, which complements and extends previous work on the association between mindfulness and performance. Elite athletes with high levels of dispositional mindfulness report lower levels of performance worries (Röthlin et al., 2016) and dispositional mindfulness is positively related to self-rated (Gustafsson et al., 2015) and objective (Gooding & Gardner, 2009) indicators of athletic performance. Furthermore, mindfulness-based intervention studies have demonstrated that mindfulness training is effective for improving athletic performance among elite shooters (John et al., 2011), basketball players (Tebourski et al., 2022), dart throw beginners (Zhang et al., 2016), and student athletes (Glass et al., 2019; Gross et al., 2018).

In the current study, we did not measure objective athletic performance, but instead focus on athlete’s perceptions of their performance. While it is important to produce actual athletic performance during training, it is equally important to improve an individual’s perception of their performance. According to Bandura (1977), it is key for athletes to establish self-efficacy. Athletes with high levels of perceived success in previous performances typically exhibit higher levels of performance in the future (George, 1994). During practice, when athletes have a relatively consequence-free environment to try new things or perfect specific techniques, the establishment of self-efficacy is likely to foster future success. Our results indicate significant and positive associations between state mindfulness and self-rated athletic performance, implying that state mindfulness may play a critical role in this process. Our research provides preliminary empirical support for future intervention studies looking to apply brief mindfulness exercises in the context of athletes’ daily training to promote both perceived and potentially also objectively measured athletic performance (Shaabani et al., 2020).

This study showed that the effects from state mindfulness to sIgA and cortisol were non-significant at both the between-person and within-person levels. Findings of this study are inconsistent with previous research showing that mindfulness interventions reduced levels of salivary
cortisol in Wushu athletes (Mehrsafar et al., 2019), elite shooters (John et al., 2011), and individuals from a military helicopter unit (Meland et al., 2015). One potential explanation for this inconsistency may be that the measure of state mindfulness used in this study (MAAS-State; Brown & Ryan, 2003) does not measure specific facets of mindfulness, such as non-reactivity and non-judgment. Meland and colleagues (2015) measured mindfulness using the Five Facets Mindfulness Questionnaire (Baer et al., 2008) and showed that the facets of non-judgement of inner experiences and non-reactivity to inner experiences were highly relevant when athletes modulate their stress responses. Another potential explanation is that biological stress indices in the aforementioned studies were collected cross-sectionally at a single time point. In comparison, repeatedly collecting salivary samples in over period of time via diary methods typically provide more accurate results (Ohly et al., 2010). Indeed, Mehrsafar and colleges (2019) collected diary samples and found that daily salivary alpha-amylase (sAA) of Wushu athletes was unaffected by a mindfulness intervention, corroborating the findings of the present study, which also used a diary study approach. In previous studies, biological data was collected either pre-competition (John et al., 2011) or during competition-related national selection periods (Mehrsafar et al., 2019). In this study, biological data was collected immediately after the daily training, which is typically “lower stakes” than competition and therefore may induce less of a stress response than competitive settings. Finally, we found relatively low ICCs for both sIgA and cortisol indicating high within-person variability of these biological measures. This indicates that people’s biological stress markers varied substantially from training session to training session. Conversely, we observed a high ICC in our measure of state mindfulness (MAAS; Brown & Ryan, 2003), which may be because this instrument uses negatively worded items that capture low mindfulness/mindlessness (Sauer et al., 2011). Accordingly, the non-significant effects from state mindfulness to sIgA and cortisol might be due to the inconsistencies between high ICC of state mindfulness and low ICC of the stress biological markers.
Regarding the use of cortisol as a reliable biological measure of stress, Rist and Pearce (2019) emphasized that researchers should be conscious of not overgeneralizing the findings of cortisol levels to the psychological profile of stress. Overemphasizing the role of cortisol levels can lead to biased interpretations of the stress levels of athletes. Subjective measures reflect acute and chronic training loads with superior sensitivity and consistency to objective measures (such as cortisol), and it is recommended objective measures (e.g., physiological and biochemical makers) are accompanied by subjective measures of athlete stress and well-being (Saw et al., 2016). Subjective and biological markers of stress are different yet related concepts. Psychologically, subjective stress can be viewed as a filter of biological indices and reflects the extent to which various biological stress makers have been activated by subjective experiences (Pace-Schott et al., 2019). Previous research demonstrated significant negative relations between mindfulness and perceived stress among elite athletes (e.g., Gustafsson et al., 2015; O’Connor et al., 2022). We found similar negative relations between state mindfulness and negative mood, which can be indicative of stress (Stone et al., 1993). Future research should consider assessing athletes’ stress levels using both the stress-related biological markers and the self-reported perceived stress.

Strengths, Limitations, and Future Directions

The present study has several strengths. First, we focused on an important but neglected area by examining relations between state mindfulness and athletes’ stress, mood, and athletic performance in training. Second, we measured stress repeatedly using the biological markers from the elite athletes’ saliva samples collected directly after training. Third, we collected data from a sample of athletes from 11 different individual and team sports, making the findings of this study generalizable across athletes from different sporting backgrounds.

However, the current study is not without its limitations. First, we did not include any objective measures of athletic performance during training. Performance is evaluated differently across sports. Given we sampled athletes from 11 different sports it was difficult to develop a standardized measure
of objective athletic performance. Second, the design of the current study was correlational in nature, and as such, we cannot determine whether state mindfulness played a causal role in producing the observed results. Nonetheless, this work paves the way for future studies looking to adopt an experimental approach with brief mindfulness training before or during training sessions. Third, as discussed, we chose to use the 5-item MAAS-State to measure state mindfulness, but acknowledge that this scale was not developed for the sport context and may therefore overlook some aspects of mindfulness. We chose to use this scale, which has been validated in a Chinese sample (Black et al., 2012), to reduce participant burden, an important consideration in diary studies (Janssens et al., 2018). On a related note, the negatively wording of the MAAS (Brown & Ryan, 2003) arguably captures mindlessness but does not necessarily mean the participants were mindful (Sauer et al., 2011). Future research should therefore consider using scales that were specifically developed to measure state mindfulness in sport contexts, such as the State Mindfulness Scale (Tanay & Bernstein, 2013) and State Mindfulness Scale for Physical Activity (Ullrich-French et al., 2022). Fourth, we measured biological stress markers directly after each athlete’s afternoon training session because we were interested in associations between state mindfulness in training contexts. Given athletes from different sports had different training schedules, the time of day that samples were collected were relative to training schedules and were not necessarily consistent across sports. Biological indicators of stress such as salivary cortisol and sIgA can be influenced by athletes’ daily rhythms and may have influenced results (Pritchard et al., 2017). Relatedly, athletes might feel less stressed during training compared to competition or pre-competition settings. Collecting data during competition typically produces larger effects related to biological markers of stress (e.g., Dehghan et al., 2019; Sinnott-O’Connor et al., 2018). Moreover, given that in our study there are female elite athletes aged 13 and above and data collection lasts for one month, menstruation may have affected the measured biological markers (Klusmann et al., 2022). We did not control for these effects directly but operate under the assumption that fluctuations caused by menstruation are relatively random would thus be
captured by random-effects component of our models. Further, controlling for differences in
participants' biological sex partials out differences due to having a period versus not having a period.
Nonetheless, we suggest an interesting avenue for future investigation would be to consider the
effects of menstruation and other potential biological differences related to sex on the effects of
mindfulness, biological stress markers, and performance.

Conclusion

Using a diverse sample of elite athletes from a variety of disciplines, the current study provided
preliminary empirical support for associations between state mindfulness, mood, and self-rated
athletic performance both within- and between- athletes engaging in training. Findings of the current
study are encouraging for the development brief mindfulness training programs for integration into
the daily training schedules of elite athletes. Enhancing day-to-day state mindfulness in athletes has
the potential to improve both mental wellbeing and athletic performance.
References

https://doi.org/10.1037/0022-3514.84.4.822

https://doi.org/10.1371/journal.pone.0256888

https://doi.org/10.1080/07448480903540481

https://doi.org/10.1007/978-1-60327-254-4

https://doi.org/10.1016/j.scispo.2018.04.011

https://doi.org/10.32872/spb.2679

https://doi.org/10.1016/j.psychsport.2023.102422

Pritchard, B. T., Stanton, W., Lord, R., Petocz, P., & Pepping, G. J. (2017). Factors affecting measurement of salivary cortisol and secretory immunoglobulin A in field studies of

Rasch analysis of the Freiburg mindfulness inventory. Religions, 2(4), 693-706.

https://doi.org/10.3390/rel2040693

https://doi.org/10.1037/spy0000201

https://doi.org/10.1123/ijspp.2017-0683

http://dx.doi.org/10.1136/bjsports-2019-100654

https://doi.org/10.1093/abm/15.1.8

performance in sport psychology. *Psychology of Sport and Exercise*, 16, 3-14.

http://dx.doi.org/10.1016/j.psychsport.2014.07.004

https://doi.org/10.1016/S1469-0292(01)00035-8

https://doi.org/10.1080/1091367X.2021.1952207

Figure 1. The multilevel structural equation model of the effects from mindfulness (mind) to total mood disturbance (TMD)
Table 1.
Means, standard deviations (SDs), internal consistency reliabilities, ICCs, and correlations among key study variables among Chinese elite athletes (n = 78)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± SD</th>
<th>Reliability</th>
<th>ICC</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mindfulness</td>
</tr>
<tr>
<td>Mindfulness (n = 2036) a</td>
<td>5.01±1.13</td>
<td>.911</td>
<td>.840</td>
<td>-</td>
</tr>
<tr>
<td>TMD (n = 2032)</td>
<td>.99±.53</td>
<td>.902 b</td>
<td>.547 c</td>
<td>-.464***</td>
</tr>
<tr>
<td>Athletic performance (n = 2036)</td>
<td>6.19±1.85</td>
<td>-</td>
<td>.989</td>
<td>.067**</td>
</tr>
<tr>
<td>Cortisol (n = 2016)</td>
<td>919.33±243.94</td>
<td>-</td>
<td>.110</td>
<td>-.057**</td>
</tr>
<tr>
<td>sIgA (n = 2016)</td>
<td>19.31±5.28 d</td>
<td>-</td>
<td>.148</td>
<td>.030</td>
</tr>
</tbody>
</table>

Note. TMD = total mood disturbance; ICC = intraclass correlation coefficient; sIgA = human secretory immunoglobulin A. Internal consistency reliability was the mean of scale reliabilities across 27 daily assessments. Within-person correlations are at the lower triangle and the between-person correlations are at the upper triangle.

p < .01; *p < .001.

a n is the total number of valid observation points;
b the internal consistency reliability of mood subscales: anger α = .888, confusion α = .854, depression α = .884, fatigue α = .867, tension α = .881, and vigor α = .903.
c for different dimensions of mood: anger ICC = .441, confusion ICC = .493, depression ICC = .408, fatigue ICC = .527, tension ICC = .507, and vigor ICC = .606.
d the units of Cortisol and ssIgA are nmol/L.
Table 2.
Findings of the between-person and within-person effects of mindfulness on total mood disturbance, subdimensions of mood, self-rated athletic performance, sIgA, and cortisol among Chinese elite athletes \((n = 78)\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Dependent Variable</th>
<th>Within-person effects</th>
<th></th>
<th></th>
<th>Between-person effects</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Estimate</td>
<td>SE</td>
<td>95% CI</td>
<td>Estimate</td>
<td>SE</td>
<td>95% CI</td>
</tr>
<tr>
<td>Model 1</td>
<td>Total mood disturbance</td>
<td>-.454***</td>
<td>.039</td>
<td>[-.530, -.378]</td>
<td>-.610***</td>
<td>.101</td>
<td>[-.809, -.411]</td>
</tr>
<tr>
<td>Model 2</td>
<td>Anger</td>
<td>-.278***</td>
<td>.062</td>
<td>[-.399, -.157]</td>
<td>-.503***</td>
<td>.096</td>
<td>[-.891, -.214]</td>
</tr>
<tr>
<td></td>
<td>Confusion</td>
<td>-.433***</td>
<td>.048</td>
<td>[-.527, -.339]</td>
<td>-.702***</td>
<td>.118</td>
<td>[-.972, -.330]</td>
</tr>
<tr>
<td></td>
<td>Depression</td>
<td>-.375***</td>
<td>.035</td>
<td>[-.444, -.306]</td>
<td>-.561***</td>
<td>.118</td>
<td>[-.972, -.330]</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>-.296***</td>
<td>.032</td>
<td>[-.358, -.233]</td>
<td>-.327*</td>
<td>.144</td>
<td>[-.608, -.045]</td>
</tr>
<tr>
<td></td>
<td>Tension</td>
<td>-.306***</td>
<td>.041</td>
<td>[-.386, -.226]</td>
<td>-.523**</td>
<td>.123</td>
<td>[-.764, -.281]</td>
</tr>
<tr>
<td></td>
<td>Vigor</td>
<td>.205***</td>
<td>.046</td>
<td>[.114, .296]</td>
<td>.195</td>
<td>.103</td>
<td>[.007, .397]</td>
</tr>
<tr>
<td>Model 3</td>
<td>Athletic performance</td>
<td>.426***</td>
<td>.052</td>
<td>[.325, .527]</td>
<td>.415***</td>
<td>.101</td>
<td>[.217, .614]</td>
</tr>
<tr>
<td>Model 4</td>
<td>sIgA</td>
<td>.043*</td>
<td>.019</td>
<td>[.006, .081]</td>
<td>-.096</td>
<td>.312</td>
<td>[-.707, .515]</td>
</tr>
<tr>
<td>Model 5</td>
<td>Cortisol</td>
<td>-.028</td>
<td>.022</td>
<td>[-.072, .015]</td>
<td>-.113</td>
<td>.258</td>
<td>[-.619, .393]</td>
</tr>
</tbody>
</table>

Note. sIgA = human secretory immunoglobulin A. SE = standardized error; CI = confidence interval; Total mood disturbance = total scores of five negative dimensions of mood minus vigor. For all models, the independent variable was mindfulness with age, gender, years of training, and regions controlled. Estimate = standardized regression coefficients.

*p < .05; **p < .01; ***p < .001.
Online Supplementary File

Table S1.
The 5-item Mindful Attention Awareness Scale (MAAS) – State for Sports

Instruction: On the scale of 0 to 6, please indicate the degree to which you had each of these experiences **during your training today**. Please answer in terms of your actual experience and not what you think it should be.

<table>
<thead>
<tr>
<th>Items</th>
<th>English</th>
<th>Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I find it difficult to stay focused on today’s training sessions.</td>
<td>我发现自己很难保持专注在今天的训练上。</td>
</tr>
<tr>
<td>2</td>
<td>I did not concentrate on training.</td>
<td>我训练不专心。</td>
</tr>
<tr>
<td>3</td>
<td>I was preoccupied with the future or the past.</td>
<td>我沉浸在将来或过去的事上。</td>
</tr>
<tr>
<td>4</td>
<td>I was training automatically, without being aware of what I was doing.</td>
<td>我刚才自动化地训练，没有意识到当时正在做什么。</td>
</tr>
<tr>
<td>5</td>
<td>I was rushing through training without being really attentive to it.</td>
<td>我仓促地完成训练，没有真正留心于训练。</td>
</tr>
</tbody>
</table>

Note.

Items are rated on a 7-point Likert rating scale from 0 (not at all) to 6 (very much).
Table S2. Composite reliabilities of the Brunel Mood Scale (BRUMS) and Mindful Attention Awareness Scale (MAAS) – State at the within-person and between-person levels.

<table>
<thead>
<tr>
<th>Scales and subscales</th>
<th>Composite Reliability</th>
<th>Within-person Level</th>
<th>Between-person level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Composite Reliability</td>
<td>Omega 95%CI</td>
<td>Omega 95%CI</td>
</tr>
<tr>
<td></td>
<td>LL UL</td>
<td>LL UL</td>
<td>LL UL</td>
</tr>
<tr>
<td>BRUMS</td>
<td>Anger</td>
<td>.900 .882 .913 .836 .823 .847 .939 .910 .954</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confusion</td>
<td>.859 .832 .879 .760 .742 .777 .932 .899 .950</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depression</td>
<td>.882 .864 .897 .852 .841 .862 .878 .817 .911</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>.898 .877 .914 .835 .823 .846 .925 .890 .944</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tension</td>
<td>.893 .872 .909 .808 .794 .821 .944 .917 .958</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vigor</td>
<td>.911 .889 .926 .789 .773 .805 .968 .953 .976</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAAS-state</td>
<td>.913 .894 .927 .873 .864 .882 .918 .881 .939</td>
<td></td>
</tr>
</tbody>
</table>

Note. CI = confidence intervals; LL = lower limit; UL = upper limit.
Table S3.
Model fit indices on models of mindfulness on total mood disturbance, subdimensions of mood, self-rated athletic performance, sIgA, and cortisol among Chinese elite athletes ($n = 78$)

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>CFI</th>
<th>TLI</th>
<th>RMSEA</th>
<th>SRMR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: Total mood disturbance</td>
<td>16.109</td>
<td>6</td>
<td>.013</td>
<td>.974</td>
<td>.930</td>
<td>.029</td>
<td>.000</td>
<td>.087</td>
<td></td>
</tr>
<tr>
<td>Model 2: Dimensions of mood</td>
<td>16.112</td>
<td>6</td>
<td>.013</td>
<td>.996</td>
<td>.946</td>
<td>.029</td>
<td>.000</td>
<td>.077</td>
<td></td>
</tr>
<tr>
<td>Model 4: sIgA</td>
<td>18.335</td>
<td>6</td>
<td>.005</td>
<td>.891</td>
<td>.710</td>
<td>.032</td>
<td>.001</td>
<td>.088</td>
<td></td>
</tr>
<tr>
<td>Model 5: Cortisol</td>
<td>14.478</td>
<td>6</td>
<td>.025</td>
<td>.941</td>
<td>.844</td>
<td>.026</td>
<td>.000</td>
<td>.102</td>
<td></td>
</tr>
</tbody>
</table>

Note. sIgA = human secretory immunoglobulin A. χ^2 = chi-square; df = degrees of freedom; CFI = comparative fit index; TLI = Tucker-Lewis index; RMSEA = root mean square error of approximation; SRMR = standardized root mean square residual.
Table S4.
Effects from demographic variables and dispositional mindfulness to outcome variables at the between-person level (n = 78)

<table>
<thead>
<tr>
<th>Model</th>
<th>Dependent variable</th>
<th>Gender</th>
<th>Age</th>
<th>Years of training</th>
<th>Sport type</th>
<th>Dispositional mindfulness</th>
<th>Meditation experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>Total mood disturbance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.089</td>
<td>-.212*</td>
</tr>
<tr>
<td>Model 2</td>
<td>Anger</td>
<td>.143</td>
<td>-.346*</td>
<td>-.006</td>
<td>-.193*</td>
<td>-.139</td>
<td>.244*</td>
</tr>
<tr>
<td></td>
<td>Confusion</td>
<td>-.001</td>
<td>-.040</td>
<td>.034</td>
<td>-.192</td>
<td>-.077</td>
<td>.044</td>
</tr>
<tr>
<td></td>
<td>Depression</td>
<td>.082</td>
<td>-.439***</td>
<td>.155</td>
<td>-.232*</td>
<td>-.110</td>
<td>.174</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>.037</td>
<td>-.035</td>
<td>.082</td>
<td>-.341*</td>
<td>-.163</td>
<td>-.033</td>
</tr>
<tr>
<td></td>
<td>Tension</td>
<td>-.056</td>
<td>-.322**</td>
<td>.276*</td>
<td>-.314*</td>
<td>-.160</td>
<td>.056</td>
</tr>
<tr>
<td></td>
<td>Vigor</td>
<td>.462***</td>
<td>-.074</td>
<td>-.346**</td>
<td>.195</td>
<td>.223</td>
<td>.075</td>
</tr>
<tr>
<td>Model 3</td>
<td>Athletic performance</td>
<td>.172</td>
<td>-.009</td>
<td>-.308**</td>
<td>.077</td>
<td>.444***</td>
<td>.165</td>
</tr>
<tr>
<td>Model 4</td>
<td>sIgA</td>
<td>-.087</td>
<td>.907</td>
<td>-.806</td>
<td>.466</td>
<td>.357</td>
<td>-.215</td>
</tr>
<tr>
<td>Model 5</td>
<td>Cortisol</td>
<td>-.266</td>
<td>.384</td>
<td>-.635</td>
<td>.663***</td>
<td>.499**</td>
<td>-.373</td>
</tr>
</tbody>
</table>

Note. *: p<0.05; **: p<0.01; ***: p<0.001